
r
AD A072 969 GEORGIA INST OF TECH ATLANTA SCHOOL OF ENGINEERING S—ETC F/G 20/11

ON SOlE NEW GENERAL AND COMPLEMENTARY ENERGY THEOREMS FOR THE R—ETC(U)
DCC 78 S N ATLURI N00014—78—C—0636

UNCLASS IFIED GIT—ESM SNA—1O It
J o ~~ ——4O~ ___________
0 7 2 9 5 9

U I

- — END j
DAtE

9—
oOC I

I , 1
I

H p



l.V L
• L~~~~.2 2.2

~~~~

IIIII~U~H ~ ~25 HH ’ 4 HH~
MICROCOPY RESOLUTION TEST CHART



— ~~ ~~~~~~~~~~~ .—~~~~~‘ — - ~~~~~~~~~

~~~~~ PF1D ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
__________________

LEVEL~Office of Naval Research

~~~~~~~~~~~~~~~~~~~~~~~~~~~ NR 064—610

Technical RepOrt No. 1’~ ID ID c ~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ON SO1’IE NEW ~ENERAL A~D COMPLEMENTARY ENERGY

THEOREMS FOR THE RATE PROBLEMS IN FINITE STRA N ,
-

~~~- 
-

~~~~~

CLASSICAL ELASTO-PLASTICITY ,

* 

_ _ _ _ _ _

Cooperative for the Advancement of Computational Mechanics
• 

_______________________ School of Civil EngineeringAccession For 
411

• I1TIS G~~&I Georgia Institute of Tecbt~e1ogyDDC TAB D
Una~uiounced D Atlanta,Ceorg3a 30332
Justification___________

• 
Distri~ !~~~~~L .~~~~~~~~~~~~~~~~~~~~ 

~~~~~~

‘ • 
~~~~~ I ~~~~~~~~~ has bocD ap

lOT public release w~d aaL~ itsk~ail fl ~ or L~~trthutfon ~fl UnflrU1t.d~Dist r .pe~~a1



- ~~~~~~~~

~~~~~~~~~~~~~~~~~~ ••••_ __~_.~~ _,..__. .•..•.___,~ —• -~~~ •—~—~-—,~— •— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ——— .,——~~ •~ •~— —•

ON SOME NEW GENERAL AND COMPLEMENTARY ENERGY THEOREMS FOR

THE RATE PROBLEMS IN FINITE STRA IN , CLASSICAL EIAS TO-PLASTICITY

Satya N. Atlur i

I
School of Engineering Science and Mechanics

georgia Institute of Techn~T~~~~~~~~~~Atlanta, Georgia 30332, USA

Summary: General variational theorems, for the rate problem of classical

elasto-plasticity at finite strains, in both Updated Lagrangean (UL) and

Total Lagrangean (TL) rate forms, and in terms of alternate measures of stress-

rate and conjugate strain-rates, are critically studied from the point of

view of their application. Attention is primarily focussed on the derivation

.0 •. of.o nsistent complementary energy rate principles, which could form the

basis of consistent and rational assumed stress type finite element methods;

and two such principles, in both to UL and TL forms, are newly stated . Systema-

tic procedures to exploit these new principles in the context of a finite

element method are also discussed . Also certain general modified variational

theorems, to enable an accurate numerical treatment of near incompressible

behaviour at large plastic strains, are discussed.

I. Introduction

The advent of high speed digital computers and powerful numerical methods ,

such as the finite element methods, in the past two decades or so, have great-

ly expanded the scope of application of nonlinear theories of solid continua

to practical problems in engineeeing. In the formulation of such numerical

methods as the finite element methods, for problems of nonlinear solid

mechanics, variational theorems (and their generalizations to account for
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discontinuities at interelement boundaries in a finite element assembly)

have played a central role. [See, for ins tance , WASHIZU (1975), NEMA T—NASSER

(1974), ATLURI (1975), and ATLURI and MURAXAWA (1977), for a discussion of

finite element formulations in nonlinear elasticity].

Rigorous and consis tent formulations for numerical analys is of large

strain elasto-plastic problems have become necessary due to the increased

interest, in recent years, in analyzing problems such as metal-forming

processes , ductile fracture initiation and stable crack growth

in cracked bodies , etc. Indeed several such formulations , and applica tions

of the same, have appeared in recent literature . Among these can be cited

the works of: HIBBIT, MARCAL , and RICE (1970) , who use a total Lagrangean

(TL) rate formulation [wherein a fixed reference frame is used]; NEEDLEMAN

(1972), NEEDLEMAN and TVERGAARD (1977) , and HUTCHINSON (1973) who also use 
~

- .  “
~ L i~at~ f~~ mu1ation , but with conve:ted coordinates ; YAMADA , HIRAKAWA , and

WIF I (1977) who use an Updated Lagrangean (UL) rate formulation [wherein

the curren t conf iguration is used as a reference for the subsequent step];

OSIAS (1972) who also uses an Ut scheme,which , due to the use of an elastic-

-: plastic rate constitutive law that does not admit to a potential , leads to

non-symmetric st i f fnesc  matrices through a Ga lerkin Scheme ; McMEEKING and

RICE (1975) who also use a UL scheme which , through the use of a rate consti-

tutive law with a potential , leads to symmetric stiffnesses ; and NEMkT-NASSER

and TAYA (1976) whose formulation represents a modification to that of Mc-

— MEEKING and RICE (1975) to improve the accuracy in the case of large deforma-

tion of compressible materials . Al l  the above cited works employ a cla~ qical

rate-independent clasto-plastic theory , as generalized by HILL (1959). It

should also be noted tha t all the above finite element rate formulations

are based on the pr inc iple of virtua l work in rate fo rm , as first stated by

2

-—~~~ 
—h--- -



_____ — — — — ,— .—‘ ~ 
-
~
-- — •

~~~~
——

~~ 
-•-—---

~ 
—

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—-•

~

- —.-

~~

- —.—

~

-- —

HILL (1959), and thus all the above finite elunent schemes are based on

assumed displacements that are compatible at interelement boundaries.

However, to the best of the author’s knowledge, no studies concerning

the convergence of the assumed displacement finite element methods of the

above cited type, for the rate problems of classical elasto-plasticity, exist

in the literature. Even in the somewhat simpler problem of finite elasticity ,

studies of convergence of finite element methods, based on potential energy

principles, are just beginning to emerge [ODEN (1978)). From this stand-

point, as well as from that of possibly studying solution bounds, it is of

interest to consider consistent formulations of numerical (finite element)

methods based on complementary energy principles for the rate problem of

finite strain elasto-plasticity .

Another important question in numerical schemes for elastic-plastic flow

at large strains is how to deal with the effectively incompressible behaviour

at such magnitudes of strain. It is well-known that numerical schemes based

directly on the principle of virtual work fail in the limit of incompressibility

unless the mean stress is introduced as an additional variable in the formu-

lation. Such formulations, which are essentially variations of the well-

known HELLINCER (1914) - REISSNER (1950) theorem, were introduced for nearly

or precisely incompressible linear elastic materials by, }IERRNANN (1965),

TA YLOR, PIS TER, and HERRNANN , (1968), and by KEY (1969). To improve the

numerical accuracy in the near-incompressible case, NA GTEGAAL, PARKS, and

RICE (1974 , Append ix 2) modify their IJL rate potential energy formulation for

elasto-plasticity, in a way analogous to that of KEY (1969), except, instead

of the mean pressure as in KEY (1969), they use the dilatational strain rate

as an independent variable. As a consequence, even though the formulation of

l~EY is valid f or both nearly and precisely incompressible cases, the formula-

3
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tion of NACTEGAAL et.al ceases to be valid in the case of precise incompressi-

bility. However, due to the inherent nature of the complementary energy

principle (with assumed stresses as variables), it is much easier to treat

situations of near or precise incompressiblity when finite element schemes

based on a complementary energy principle are used. The works of TONG (1969),

and PlAN and LEE (1976) in solving problems of linear elastic near-incoinpres-

sible solids; and that of MURAKAWA and ATLURI (l978b) in solving finite

strain problems of incompressible nonlinear elas tic solids , all of which are

based on appropriate complementary energy principles , tend to suppor t the

above view. Moreover, as is well-known, be tter solu tions for stresses are

obtained from numerical schemes based on complementary energy principles than

from those based on potential energy principles (wherein, the stress solution

is obtained by- differentiation of the numerical solution for displacements ,

which results in a loss of accuracy for stresses).

Also, as no ted by MASUR and POPEIAR (1976), the complemen tary energy

approach holds a cons iderable promise for app lica tions to buckling problems ,

wherein , an approximation to the stress state before buckling is of ten

possible even when displacements remain unknown .

For the above reasons, special emphasis is placed in the present paper

on the study of the exis tence of consistent comp lementary energy rate theorems

for the rate problem of finite strain classical, rate-independent, elasto-

plasticity . Both the types of formulations, viz., the Total Lagrangean as

well  as the Updated Lagrangean, are considered. In this process two new

consistent rate complementary energy principles for the rate problem of finite

strain classical elasto-plasticity have been found . Systematic procedures

to exploit these complementary rate principles in the context of assumed stress

finite element methods are also discussed . In addition , a critical evaluations

4
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of the relative effectiveness of general rate principles, in both TL and

UL rate forms, and in terms of alternate stress-rate and conjugate strain-rate

measures, for application to numerical analysis of finite strain elasto-

plasticity problems, is made. Also included in the present paper are certain

general modified variational theorems which are of significance in the

numerical treatment of near incompressible behaviour at large magnitudes of

plastic strain.

II. Preliminaries:

For simplicity we refer all configurations of the body to a fixed rect-

angular cartesian coordinate system. We adopt the notation: (-) under symbol

denotes a vector; (‘)  under symbol denotes a second-order tensor; ~ = A .

implies that a = A b ; A . B denotes product of two tensors such that

(~ . ~~~ A~~ BkJ ;(A : ;) .trace (AT ~ B) A-~~B1~; and u • t ~~~~

A particle in the undeformed body has a position vector x (x~~~)

where are unit cartesian bases. We adopt the notation V0 (~~~ ~ /~ xa),

in the undeforined configuration, C0. The position vector of the particle

in the current deformed state, say CN~ 
is 

~ 
= (y~e~). We also use the no-

tation that = (
~
. ~~~~~~ The gradient of ~ is the tensor F, Ic.,

• (v°X)~ F1 Y jcy 7~y1Thx~. We also note that the base vectors of the

convected coordinates x in the current deformed configuration, CN~ 
are-given by,

— 
.
~~~~~ ~‘1~~~ 

. The non-singular tensor ~ is considered to have the polar-

decomposition , F =~~~~ . (I + J3), where (I + h )  is a symetric positive definite

tensor ca lled the stretch tensor , I is an identity tensor , and is an ortho-

gonal rotation tensor such that = ~~~~~~ The deformation tensor G is

defined by G — ~T P (I ÷ h) 2 . The Green-Lagrange strain tensor is

defined by ~ 1/2 (G - I) 1/2 (e + eT 
+ eT . e) where e is the gradien t

of the displacement vector u (~ ~ 
- x),  ie., e (!0u)T such that e~~ u1 .

5
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For our present purposes , we Introduce the stress measures : (I)

the true (Cauchy) stress tensor z. (~ e r . .  e.e . r~~ g~g~ );  (ii) a weighted

stress tensor, generally referred to as the Kirchhoff stress tensor, a ~

(E ~~~~~~~~ where J is the determinent of the matrix

(iii) the Piola-Lagrange or the First Piola-Kirchhoff stress tensor, t

(t~~~~~~~ 3
) ;  and (iv) the second Piola-Kirchhoff stress tensor, s (~ s

As discussed , for instance, by TRUESDELL and NOLL (1965) and FR.AELJS DE

VEUBEKE (1972) , the relations between the above stress measures are seen to be:

T
1 F t 1 F S F T (1)

t s  FT J(F
l •z ) (2)

and = • . F~~) 
= ~ ~,-T (3)

where F~
T m (F l

)~. We also note that eventhough a and are distinc tly

different tensors, they have the interesting property tha t s~~ where

the contravariant components and the components s~~ are as defined

earlier. Finally we introduce a stress measure which is labelled by FRAEIJS

DE VEUBEKE (1972) as the Jaumann Stress, r, through the relation ,

T Tr = .l/2 (t .a+~~ .S~ 
(4)

= 1/2 . (I + j 3) + ÷ h) . sj (5)

It Is seen from the above that the stress tensors ~~ , g, ~~~, and are symmetric ,

while t is unsymmetric .

Also , as shown , for ins tance , by TRUESDELL and NOLL (1965) and FRAELJS

DE VEUBEKE (1972),  the linear momentum balance (U 1B) equation , the angular

momentum balance (AMB) equation , the traction boundary condition (TBC), and

the displacunent bo tory condtt ion (DBC) can be written as follows



• -:: ~~~~~~

vN . T + p NB = o  (6)

or V0 ç~ . ~T) + = o (7)

or !
0 . t + p0B ” o  (8)

where B is the body force per unit mass, and and p° are the mass densities

per unit volume in C~ and C ,  respectively.

AMB :

= (9) or £ 
T (10)

or • or + I) . t • ~ = symsetric (l]a ,b)

• TBC: it . it . ~~~ 
~ (12a ,b)

where it is a unit normal to the surface Se, , in configuration C0 , where

tractions are prescribed to be t per unit area. 
-

DBC :

u u  onS (12c)
0

where S~ is the surface in C0 
where displacements are prescribed to be ~~~.

It is possible to have a mixed-mixed problem wherein, at any poin t on the

surface of the body in C0 certain components of tractions and the conjugate

components of displacements may be simultaneously prescribed .

In connection wi th the rate formulations of classical elasto-plasticity, the

requirements for a suitable stress rate are now well recognized as: that the

stress rate va:shes when t~~~sol~~ contTum undergoes 

lTd 

:tion alone j
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and when the stress tensor is referred to a coordin~~e system undergoing 
I 

-

the same motion ; and that the rate of invariants of the stress tensor is

stationary when the’stress rate vanishes. The questions of objective stress

rates and their use in classical rate theories of plasticity have been dis-

cussed by several authors; for instance, OLDROYD (1950, 1958), TRUESDELL (1955),

COTTER and RIVLIN (1955), PRAGER (1961), SEDOV (1966), MASUR (1961),

NAGUDI and WAINWRIGH T (1961) , and HILL (1967). With this background, we now

discuss the following rate variational principles in the rate theory of

classical elasto-plasticity.

III. Finite Strain Elastic—Plastic Analysis:

3.1 Rate Variational Principles in Updated Lagrangean (UL) Formulation

In the UL formulation, we refer the solution variables (displacements,

strains, and stresses) in the state CN~~ 
to the configuration of the body in

the inunediately preceding state , CN~ 
which is pressumed to be known . Let

y~ be the current (in state CN) Cartesian spatial coordinates of a particle,

to be used as a reference system for the current increment, le., from C
N 

to

C . - Le t ,rN be the true stress in C.. . Thus in the UL rate formulatLa, one• N+1
is concerned essentially with an initial stress problem , whereas the initial

disp lacemen ts in C
N 

as referred to CN itself are clearly zero. Let ~

and ~ represent the rates of the Piola-Lagrange stress, 2
nd 

Piola-Kirchhoff

stress, and Jaumann stress, respectively , referred to the current configuration.

Fur ther , we note tha t ~ = 5N+1 - ¶N ; = ~~+l - 1 N etc., where 5N41 is
- 

~~~~- - defined as the 2nd Piola-Ki:chhoff stress in state CN+1 as referred to the

configuration CN (ie., 
measured per unit area in CN), etc.,. Let ~

N represent

the gradient operator in the current coordinates , and ü be the rate of deforma-

tion from the curren t confi guration. We define the rate of displacement

gradien t ~ (çN~)
T and write = + ~~~, where 

~ 
= 1/2 (?~~/~y~ +

8
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is the UL Strain rate and ~ = 1/2 (~*i~/~y~ - ~~1~~/aY~~)] is the spin-rate .

3;l:0: Rate Potentials :

We also use to denote the corotational rate (or what is also usually

called the “.Jatmiann rate”) of Kirchhoff stress , 
~~~

. Based on general dis-

cussions concerning stress rates, contained, for instance, in the References

cited earlier, it is seen that; —

(13)

and = - T
N 

- 7N . cb (14)

Considering a classical elasto-plastic theory, it has been noted by HILL

(l967a,b) that a rate potential, ‘
~~, can be written for such that,

= (15)

As also noted by HILL (l967a), the form of the rate potential ~ can be

written as:

= 1/2 L
IJkJ~

d
iJ~~~ 

- ~~ (X~~~~~~~~~~ )
2 (16)

which yields a bi-linear constitutive law through Eq. (15). Following HILL

(1967a) we note that, in Eq. (16), LijkL is a tensor of instantaneous elastic

modulli, assumed to be positive definite and symmetric under ij’—ld inter-

-
~ 

- 
change, ~ = 1, or 0 according as is positive or negative; is a

tensor normal to the byperplane interface between elastic and plastic

domain in the strain-rate space; while g is a scalar related to the measure

of rate of hardening due to plastic deformation. Prandtl-Reuss type rate

equations of the form of Eq. (15) for classical isotropically hardening

9
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materials have been used by several authors, for instance, HUTCHINSON (1973),

McIIEEKING and RICE- (1~ ~
), and NEMAT-NASSER and ThYA (1976) .

From Eqs. (13) and (15) it is seen that if a rate potential ~ exists

for à~ , then a potentialW also exists for ~~~, such that,

= ~W/~c (17)

and further it is seen that

W ~ rN (
~ .~~~ ,) (18)

Likewise, from Eqs . (14 , 15 and 13), it can also be seen that a rate potential

U for ~ also exists such tha t,

= ~~~~~~~~ (19)

where u v  ¶N• 
~~ •~~~~) + 1/2 rN : (~T 

• ) (20)

W + 1/2 ¶N (~T . &) (21)

Fur ther , by applying the polar-decomposition theorem, we see that,

FN+l (ç7N N+l ) T = ~~~~+1 
• + j~) (22)

Where and Q~
N+l are the deforma tion grad ient and rotation tensors , respec-

tive ly, in CN+1 as referred to cN; and h is the UL rate of stretch. Writing

= 1  +~~ (where & is the Ut rate of rotation), it is seen from Eq. (22)

that,

(23)

Thus, as may be expec ted , it is seen that in the UL rate formulation, Ii a

and ~ 
a s~b where ~ and th are as defined earlier. From the definition of the

Jaumann stress r, as given in Eqs. (4,5), the UL ra te is seen to be given by;

10

-

~

- - - -  •.~ • • -~~~~~~- - - — - -



-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

--•.•..- .-~——.--•— • - -- - • -~~~~~~~~~ • • -— - —

= 1/2 [~ ÷ E
T 

+ T
N . & + 

.T ¶N] (24a)

• E 1/2 [~ + t
T 

+ T
N 

. 
~~ 

+~j r . (24b)

or, also, = s + 1/2 (.rN . ÷ ,~~ . r~~ (25)

comparing Eqs. (13) and (25), it is seen that,

= - l/2(~ • ¶
N + TN . (26)

• Thus if V is a rate potential for d*, it then follows from Eq. (26) that

there exists a rate potential ~ for ~~, such that

~~~~~~~~~~~~~~~~~~ (27)

where, = - 1/2 TN: (~~ . ~~) (28)

Results given in Eqs. (27) and (28) are useful, as shown later on, in formulat-

ing consistent complementary energy rate principles for the rate theory of

finite strain plasticity. 
-

With the above considerations for rate potentials for alternate st’~ess-

rates , we proceed to formulate the boundary value problem in terms of the

piecewise linear incremental f ield equa tions and boundary conditions in the

Ut ra te form, as follows:

~ I

3.1.1: Fie ld EQuations and Boundary conditions in UL Rate Form:

In terms of s , € and u

Considering, for instance , the linear momen tum balance equa tion for
+1 in the Ut Coord ina tes , we see from Eq. (7) that this can be written as:

[~~ ÷l 
. ~~N+l ) T1 + ~~ 8N+l 

= 0 (29)

11
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where, as defined earlier, is the 2nd Piola-Kirchhoff stress in

as measured per unit area in C. and 8N+’ ¶N ~~ etc. The initial stress
— ‘~

field .~
N, which is assumed to be equilibrated (in an actual numerical im-

plementation this may not be true , and hence it is often necessary to employ

corrective iteration procedures to check the true equilibrium in C
N). is

then required to sacisfy the equation,

N N N N
. 1  + p B  = 0  (30)

Comparing Eqs. (29)tand (30) we obtain the rate form of the linear momentum

balance equa tion for ~~~. Using arguments similar to the above, the following

field equations and boundary conditions are derived in UL rate form.

(1148)-’ . C ’ + T
N ~~N .]  + = 0 (31)

~AMB) = ~T (32)

(Compatibility) 
,
~~ a = l/ 2(~ + ~

T) a ~~~~~~~~~~~~~~ + &&TIi (33)

(TBc)- * . . &u)~~
a t =

~~~ a t S a (34)

(DBC)-~ U = U at S - 
- (35)

where is the mass density in c
N
; B are rate of body forces/unit mass ;

Sa and S are appropriate segments of the boundary of the solid in CN
;

N U
N

and is a unit norma l to the boundary of the solid in

In terms of t , é , and ii

In manner ana logous to above , these field equations can be shown to be:

(U4B)—’ ~~
N £ + ~~~~~ = o (36)

(AMB) (!~~)
T ¶ N 

+ ~ = ~ T 
+ 1

N (VNu)  (37)

or , equivalently, (A)4B) can also be written as:

12
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(AMB)-

(38)

or h T
N

+ T
N 

~~~+~~~~~~~~
T

÷ T
N ~~~~~~~~ ¶ N (38a)

(Compatibility)-’ = (~N~ ) T (39)

or, equivalently, (VNU)T = & + Vi (40)

(TBC)-’ * . t = at S~ (41)
N

(DUC)-’ same as in Eq. (35).

3.1.2 General Variational Principles in UL Rate Form:

3.1.2.1: In terms of ~~, ~ and U :
—

Using a virtual work principle as applicable to an initial stress pro-

* 

blem , and following the procedure outlined by WASHIZ U (1975), we obtain a

genera l Ut rate principle for elastic-plastic problems , analogous to the

well known HU (1955) - WASHIZU (1955) principle of linear elasticity . This

general rate princip le* governing Eqs. (31 to 35 and 17) can be stated as

the condition of stationarity of the functional:

TT~~ (ü ~~ = 

VN 
~“ - P

NB . U + 1/2 
N 

~~~~~~~~ (~7
N

) 
T
]

- : - 1/2 < (VNu) + (VN ) T >)}dv - t • U ds

. . 
Sa

— 

S~ 

. (tj  - ~)ds. (42)

where V is a rate potential for ~~, as def ined through Eqs. (18 and 16). The

above rate variational principle governs the rate variables from C
N 

to CN+l .

*The general variational principles as stated in Eq. (42) above, as well as
those in Eqs. (53, 69, 82, 85, 114, 119, and 127) to follow, can be modified

• appropriately through the method of Lagrange Multipliers , as discussed in ATLURI
and MUR AKAWA (1977),  to account for discontinuities at interelement boundaries
when these principles are applied to a finite element assembly.

13

________________________ .~~ _ _ g _ •__ _*_ *_, _ ___ _ ____ __~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - ~~~~~ •



- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • - 

~~~~~~~~~~~~~~~~~~~~

- -

~~

The satisfaction of the ful ly nonlinear f ield equa tions in C
N~ 

in a numerica l

solution method such as the finite element method, must be checked at each

step; and these checks can be performed based on a variational principle

governing the nonlinear field equations at CN . The details of such corrective

iterative procedures , at the end of each increment, as the “equilibrium check” ,

“compatibility mismatch check”, etc. can be found , for ins tance , in the thesis

by MURAI<AWA (1978).

We now consider certain special cases of the general rate principle

given through Eq. (42). If Eqs. (17, 33, and 35) are met a priori, one can

reduce Eq. (42 ) to a functiona l associated with the Ut rate principle of

poten tial energy , as: -

11
*2 (3 = 

~
1N 

{w~~~ - 
NB . u + 1/2 N [(ta) (VN ) T]}d

- f  t . i ~ds (43)
Sa

The principle ~~*2 = 0 can be seen to lead to Eqs . (31,32 , and 34) , and is

equivalent to a principle stated originally by HILL (1959).

By inverting the relation in Eq. (17) to express ~ interms of ~~ , one

can achieve a contact transformation,

W - = ~*ç~) (44)

Using Eq (44) one can eliminate ~ from Eq (42) to derive a HELLINGER (1914)

REISSNER (1950) type UL rate principle, with the associated functional:

~ 
‘1N 

•

~~ 

• *c:) - pNB . + 1/2 TN : [~?.u) •

+ 1/2 ~ : £ z ~
) + (VN )T)}dV - t . u ds - $ t . (~ - ~ )ds

2 
S~~ S

~~

(45)
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Based on the arguments presented earlier for a linear elastic case ,

for instance, by ATLURI (1975), it can be seen that in a finite element

application of the principle stated through Eq. (45), one needs to assume

over each finite element, an arbitrary, syninetric, and differentiable stress-

ra te field & , and a differentiable u that is also inherently compatible at

the interelemen t boundaries .

We now examine the possibility of deriving a complementary energy rate

principle from Eq. (45) . To this end , we firs t note that in the present

UL rate formulation the 1MB conditions Eq. (31), are linear in~~ and

further, unlike in Eq. (7) , do not involve coupling of ~ with displacement

gradients. Thus it becomes possible to satisfy both the 1118 and AMB conditions,

Eqs. (31 and 32) respectively, a priori, by choosing a synunetric J such that ,

= cur l cur l A + (46)

where A is the synunetric Maxwell-Morera-Beltrami second-order stress function

tensor for a general three-dimensional case. In Eq. (46).curl A is defined

such that (curl A).. = e. A ; (curl curl A).. = e. e A ; e. is
— ~j  i.pk jk,p Lj  imn jpq mp,nq Ljk

the alternating tensor, and is any symmetric particular solution such

that,

= 
N~ - • [f . (?u)~ 

- (47)

one simple way of satisfying Eq. (47) is to assume particular solutions for

the direct stresses ê~~ ( no sum on i; i = 1,2,3) only, in the following way.

= J~ 
[ N0 - ( N u

i i
) ; k]d

~~ 
(48)

(no sum on i, i 1,2,3)

and = 0 (i # j) (49)
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In Eq. (48) (;i) indicates ~
( )Thy~. However , if the above assumptions are

used in an assumed-stress type numerical scheme (discussed further below)

the question of completeness of the chosen stresses, or; in other words,

the effect, on that numerical solution, of the lack of account of the influence

of displacement rates on the chosen shear-stress-rate field, as in Eq. (49),

remains to be answered. Such effects can be only understood, in general,

from a detailed mathematical study of convergence of the method, which study

is not pursued in the present paper and remains an open question. Assuming

that the satisfaction of the 1MB and M4B conditions in the manner of Eqs. (48 and

49) is “satisfactory” , and further if the TBC condition is also met a priori ,

one can reduce Eq. (45) to a functional associated with the complementary

ener gy principle,

• = 

~
‘N 

~~~~~ ç~
) - 1/2 Z

N: [?u) • ~.Y.~u) T
Jj d V

t .uds (50)

In a finite element application , VN can be subdivided into M subdoma ins ,

V~~ (m 1,... M), each wi th a boundary ~~~~~ In general it is seen that

= s~ + S + p~~ where S~ , S are , respectively, the por t ions
mN ~~

• of where tractions and displacements are prescribed , and is that

por tion of ~~~~ which is common to an adjacent element (interelement boundary).

It is to be noted that in the finite element app lication of Eq. (50) , the

candida te stresses 
,~~, should , not only , satis fy the LMB and AMB conditions ,

Eqs . (31) and (32), but also satisfy the interelement traction reciprocity

condition
t , (~ )+ + (tY = 0 (where £ is defined through Eq. (34)) at p~~

a priori. One can introduce this interelement condition directly as a condition

of constraint into Eq. (50) , in order to preserve a w ide choice of candidate
1•

The superscripts (+) and (- denote, respectively, the two aides o~. in
the limit that p~~ 

is approached.
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stress-rates ~~, as:

~~~~ 
,
‘~~ ~~

) 
-

= 
~~~~ 

j ’ { - ~~ ç~) - 1/2 T
N: [&~

) . (vNU) T
J~ dv

+
~~ $ t . u d s +~~ f t .~~~ dS (51)

m S  m p
UmN

where are Lagrange-Multipliers to enforce the constraint of interelement

traction reciprocity, and these can be seen to be the displacement rates at

the intereleinent boundaries . The basic idea of choosing~~ , as in Eqs . (47 and

48) , to satisfy the i�&~ condition, and the modified con~plementary energy

functional of Eq. (51), were used, in a somewhat less general fashion than is

given here, by ATLURI (1973) in formulating a finite element method and

applied to solve the problem of buckling of a shallow arch. The short-

comings of this approach were later discussed by ATLURI and NURAKAWA (1977) .

Moreover, in the modified complementary energy rate principle of Eq. (51),

in addition to the fields u and s within each element-, the displacement-rate

field at the interelement boundaries also enters as an independent variable.

However in the finite element application of the Hellinger-Reissner type

principle as in Eq. (45), only the two variables ~ (arbitrary, but differenti-

able and symmetric second order tensor) and Ci (differentiable and interelement-

compatible) need to be assumed within each element; and the interelement

traction reciprocity cnndition then follows a posteriori from the variational

principle Considering this, and the fact that, in addition, one must study

the convergence properties of the finite element scheme based on Eq. (51)

to assess the effects of choosing the particular solution in a specific

way as in Eqs . (48 , 49) , it appears most consistent and rational to directly

apply the Hellinger-Reissner type principle as in Eq. (45). The finite

~~ 

~‘T element method thus generated based on assumed as well as ~~~, can be ca lled

17
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a “mixed-method” , which leads to simultaneous algebraic equa t ions for

finite element nodal displacements as well as nodal stresses (or alternatively,

the nodal values of the stress functions as defined in Eq. (46)).

Finally, it is noted that the 1MB condition may be satisfied more

easily by choos ing ~~ , unlike in Eqs. (46,47), such that,

curl curl A - ¶ N 
(?%1) + (52 )

where is such that vN 
. 
~~ 

~~~~~ However the chosen as in Eq. (52)

then ceases to be symetric, and thus the AMB condition must be introduced

as a cons traint condition , into the associated complementary energy functional

of the type given in Eq. (50) , through additiona l Lagrange Multipliers .

Thus it appears that a rate complementary energy principle in Ut form

based on a may not be consistent and practically useful in the ana lysis of

finite strain p lasticity problems .

• 
- 3.1.2.2: In terms of L , & , and Cl

Analogous to the way discussed earlier, it can be shown that Eqs. (36,

37,39,41,35, and 19) follow as the Euler equations and natural boundary

conditions corresponding to the stationarity of the functional,

= 

~
T
N 

{i(j) - ~~ + T: ~~~~~~ - eJ}dv

• - f t .u ds - 
~~~ 

. (
~ 

- ) ds (53)
- 

- 

- S
~

- 
-
~~ where U is the rate potential for ~~, as defined through Eqs. (20,21).

-: We now consider certain special cases of the above principle. If Eqs.
. 0

(19,39, and 35) are met a priori, one can eliminate e and t as variables from

-\ Eq. (53) and derive a rate functional governing the rate potential energy

principle , as:

L - 18
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,r*2L) - 
~
!
N 

{u ~~ 
- NB . u}dV - ii ds (54)

- 
I This ra te variational principle was first stated by HILL (1959) and has

been widely used in finite element applications to elastic-plastic problems

[See for instance , NEEDLEM~N (1972), MCMBEKING and RICE (1975), and NEMT-

NASSER and ~EJ~YA (1976)].

It is interes t ing to note that both the LMB and AMB conditions ,

Eqs. (36) and (37) respectively, as well as the TBC , Eq. (41), must follow

from the principle , ~tr*2 (8u) 0 with Tr*Zgiven as in Eq. (54) . It is

shown below that the A14B condition is inherently embedded in the specia l

structure for U. Thus , using the definition of t (m~U/~eT) and Eq. (21),

it is seen that ,

= 

~~T 
cw + 1/2 Z

N : ç
T 

• 
• )] (55)

I
= ~~~~~. 

~~~~ + r
N 

. eT (56a)
~~~~~~~~ 

— —

Ill s + T N 
.~~~~~ (56b)

Wherein , the definition ‘f s from Eq. (17) has been used . Substituting for

t from Eq. (56b) into the AMB condition , Eq. (37) , it is seen tha t the AMB

condition is inherently met. This is due to the special structure for U

as given through Eq. (21). Conversely, it is seen that if, instead of

- -~~~ 

- 

Eqs. (20, and 21), an arbitrary U is postulated as a function of e, then the

principle based on the func t ional in Eq. (54) ceases to be valid , since the

AMB condition ceases either to be built into the structure of U or to follow

unambiguously as an Euler equation from the vanishing of the firs t variation

of the said functional. This fact appears to be never explicitly stated in

the literature. •
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Now , by inverting the bi-linear relation in Eq. (19) one may achieve a con-

tact transformation,

I - e = (57)

.

such that , = e’~ (58)

Using Eq. (57) to eliminate from Eq. (53) one may formally obtain a

functional:

~ ct~& = {- E~~ ( )  - 

~N- + ~~

- 1 ~~.~~~ d s _ $  t . ( ~~- u ) ds . (59)
s sU

N

In fact the above functional, as the basis for a Hellinger-Reissner type

variational principle was used by NEALE (1972). However, the validity of such

a principle needs a closer examination. If 6TT~~~ = o, with 1T~~ as given in

Eq. (59) , is a va lid Hellinger-Reissner type rate principle , we note that the

corresponding Euler equations and natural boundary conditions must be: (i)

the LNB condition , Eq. (36) ; (ii) the AMB condition, Eq. (37); (iii) the
- 

- - compatibil ity cond ition , Eq. (39), (iv) TBC , Eq. (41); and (v) the DBC , Eq. (35).

It is seen upon examining Eqs. (17) to (25) of NEALE ’S (1972 ) development,

the AI4B cor~1ition , Eq. (37) of the present paper , is in fact  not an Euler

equation of the principle 61 = 0 [Eq. (22) of NEA LE ’S (1972) work , which is

identical to 61T~~ ~~O of the present article]. Thus, if at all the AMB

condition is satisfied , for the validity of the principle, this cond ition must

be embedded in the specia l structure , if any , for the complementary energy

density function , E*(t)  of Eq. (57) above . To examine this possibility,

20
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consider the form of U as given from Eqs. (20 and 16):

2U ejjLjjk~
e
~~ 

-2 ~ (A~~s~~)
2 -2 T

~j
;
ik~kj 

+ u
ki%,j 

(60)

The stress rate, t, as derived from the above, is

.

2t~~ 2 = (LjjkL -2 ~ X1,
A~~) 

ekL 
2 

eLk 
~~im + e~~ ).r~~

- r iL(e
Li 

— ejL) (61)

where L
11~~

, ~~ , g and are as defined before. The constitutive law, Eq.

(61) , is of bi-linear type for in terms of ek~
. The inversion of this

relation in closed form, to express e~~ in terms of t1~ appears to be impos-

sible, in general.

Rearranging the right hand side of Eq. (61), it can be rewritten as:

t
~~ 

= 
~~~~~~ e~~ (62)

or matrix form W9x1 
= [*] t&9xl (62a)

Where *L depends on the tensor of instantaneous elastic modulii

(which has the symmetry properties LjjkL 
= L

J IkL = Lj j j k  = TkLij~ 
and other

quantities , 

~~~ 

:~ X
13 

and i~~~~ . However L~ikfl has the only symmetry property,

~~~~ 
= L

~~ji 
(63)

*Eventhough an analytical form for the inverse of the matrix [ L] of Eq. (62a)

appears impossible to be obtained, one may numerically invert+ Eq. (62, 62a)

to write,

4ilowever, in the “first stgp” of the solution if the solid remains elastic,
4nd the initial stresses r are zero, in the initial configuration C , then

• L ~ L and hence the 9x9 matrix of Eq. (62a) cannot be inveried, be-
ca~~~ of t~~ symeetry properties of LijkL stated above.
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or [ )  = [*L)_ l [
~
t) (64)

where, in general, LjjkL 
= 

~~~~~~ 
Using Eq. (64) a con tact transformat ion

can in fact be made, to find E (t) such that

*_ l
~ E /bt~~1 

= ejj = LjjkL tk~ 
(65)

If the ÂME condition , Eq. (37),  is inherently embedded in the structure of

E ( t ) ,  then the condition ,

ejj 
Tjk + tik = symmetric (66)

must be identically satisfied when eu is expressed in terms of t through

Eq. (65). Doing so we see that the ÂME condition is expressed by the necessary

condition on the structure of E*(t) tha t

Ø E L ~ t~~ ) r~~ + t~~ mus t be symmetric

or *L l t~~ T
i~ 

+ t [~ must  be syninetric (67)

I II
It can be seen that neither of the two terms, I and II above, is by itself

syninetric under i —~~ k interchange. The other possible ways in which I + II

above can be symmetric under i — k interchange are: (i) firstly, one term

is a transpose of the other ; however , it is easy to see that this is not the

case; (b) secondly, the first term can be expressed as the sum of a symmetric

*tensor and the transpos e of the second term. Since L~~ ~ 
cannot be foundij k.~

* — l  * —1analytically, and with the only knowledge that L~ kL = Lk~j  , it appears
i j

impossible to verify this assertion.

Thus , since the AMB condition is neither clearly an Euler equation

correspond ing to the stat ionari ty of of Eq. (59), nor can be verified

to be embedded in the structure of E*( t ) ,  the Hellinger-Reissner type principle

based on Eq. (59) appears to be of little practical value. For similar
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reasons, the complementary energy rate principle as stated by HILL (1959) —

(which can be derived formally from Eq. (59) by requiring 
,~~ to satisfy

the LNB condition, Eq. (36), and the TBC, Eq. (41), a priori) also appears

to be of little practical value.

3.1.2.3: In terms of r( t,a);  a(aw);  h, i~

To seek alternative ways to avoid the above discussed difficulties

in formluating a consistent complementary energy rate principle and

Hellinger-Reissner type rate principle, we transform the general variational

principle associated with Eq. (53) into one involving r, ~~~, Ii and ~ as

variables.

First, by comparing Eqs. (20) and (28) we note that,

U = Q + 112.1N (e.c) r~~ ç~;~~ + 1/2 r N : ~~
T .e)

= Q + 1/2 iN: ~~ T
•0 )  + r N : (a

T
.€ )  (68)

Using (68) to express U in terms of Q (which is a function of h e) and

writing ë = h + a, we rewrite Eq. (53) as:

- ~~~~~~~t) = 
‘

~ N 

{âc~
) + 1/2 f1: ~~T;~) + f: ~~Tj )

~~~~~~~~~~~~~~~~ 
[(VN )T -~~~~-~~~]}dv

- $ t.u ds - tLu-u)ds. (69)
S 

U
N

In the above Z is a skew-symmetric tensor. The condition of vanishing of
~

the first variation of the above functional can now be written as:

\1
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T~~

6~r~~~(6u; ôit ; 6w; 8,t ) = $  {~~Q l/2~~~+TN•c .+ T
+ .~

T 
. r N)J: 8~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~
T [vN~~ +~~~~ . 5u~dV

- $  (t * .~~~~
) . 8u ds - $  6~~ . (j~~-~~ ) ds 0 (7%))

S S
U

N

Noting that~~, and hence 8~., are skew-symmetric tensors, it can be

clearly seen that the Euler Equations and natural boundary conditions

corresponding to Eq. (70) are: (i) the constitutive law, Eq. (27); (ii)

the LMB condition, Eq. (36); (iii) the AMB condition, Eq. (38); (iv) the

compatibility condition, Eq. (40); (v) the TBC , Eq. (41); and (vi) the

DBC , Eq. (35) .

One can now invert (even if numerically) the relation of Eq. (27) and

achieve a contact transformation ,

Q - r : h = _R*cE) (7la)

or Q - l/2[t + T + T N 
. + c

T 
. i

N
]: h = - R*(r) (71b)

such that ~ R /~ r = h (72)

Substituting Eq. (71) in Eq. (69) we can derive a functional, involving

only ii , and r (and hence t. and~~.) as variables, corresponding to a Hellinger-

Reissner type principle which has as its Euler Equations and natural b.c ,

Eqs. (36, 38, 40, 41, and 35). If, in addition, one assumes that the LZ4B

condition and TBC for t, Eqs. (36, and 41) are satisfied a priori, one can

eliminate h and u as variables from the functional in Eq. (69) and thus

obtain a complementary energy functional:
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~ {~~~ 

R~ç) + 1/2 r
N: (~T~~) - ~~~~~}dv + J1 (~~~~~) . ds

N U
N

(73)

In the above, the definition of r [~ 1/2 ~E + ~
T + ~N ~ + ~

T 
~.“ i 

is

implied; and the spin-rate field & is required to be skew-symmetric. The

variational equation, 81r~
2 

= 0, for constrained 6t (which obey the constraint

~~~ ôt = 0 in V and n* . 8 t  = 0 at S ) and for constrained 6o~ (which— — N — 

~~N 
- —

is required to be skew symmetric) is seen to lead to

ôrr~
2(6t ,6a) = 0 = $ {[(Vc)T - - ~~ 6

T 
- + 1.N ~~~~ .

6~T} dV + $ (
~~* 

. 8 t )  (U - U) dS. (74)
S

U-..’ .

Noting that by definition, ~R /~r ii , it is clearly seen that Eq. (74) leads ,

as its Euler equations and natural b.c, (i) the compatibility condition,

Eq. (40); (ii) the ÂME condition, Eq. (38); and (iii) the DBC, Eq. (35).

Thus, Eq. (73) forms the basis of the most consistent and practically

useful rate complementary energy theorem for the UL rate formulation of

finite strain plasticity analysis methods because: (a) the admissible t

is required to satisfy, priori, only the uncoupled , linear LMB equation,

Eq. (36), and TBC, Eq. (41), which can be met easily in applications, by

setting t = x + where are first order stress functions (once-

— 

differentiable) and t~ is any particular solution such that . =

_pN;; (b) the ÂME conditions, the compatibility condition, and the DEC

follow unambiguously as Euler equations. -

In a finite element application of the complementary rate principle

as stated through Eq. (73), the assumed stress-rate field t must not only

-~ satisfy the L)~ condition (Eq. 36) within each element, but must also
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satisfy the traction reciprocity relation at the interelement boundary
* • + *

• _
viz . ,  (n .t) + (n .t) at p~~ [where + and -, respectively, indicate the

two sides of 
~inN 

in the limit that is approached]. This may, in general,

pose a severe restriction on the choice of ~ within each element, especially

when the element is of a arbitrary curved geometry. In such a case , it may

be preferrable to include this interelement traction reciprocity condition

as a constraint condition directly into the functional of Eq. (73).  The

Lagrange multipliers introduced to this end can be seen to be the interele-

ment boundary displacements. The thus modified complementary energy rate

principle for an assembly of a f ini te  number of elements can be stated

as the stationarity condition of the functional :

T1
2 

~~~~~~~~~ =
~~~~ ~

j 
[~~ 

R~~c~ ) 1/2 Z
N
: ~cY

T
.a) - ~ T

÷ $ (
* ) . u ds + ,f (

*
) . 

‘

~~ ds} (75)
S 

~mNinN

In the above functional, a and t are chosen independently within each

element in terms of undetermined parameters, whereas are chosen in terms

of displacements at nodes of a finite element and hence are common to

elements sharing a common boundary. Thus the undetermined parameters in

the field functions for a and t can be eliminated at the element level and

expressed in terms of the generalized nodal displacement coordinates. The

finite element method based on Eq. (75) thus , in the end , results in a

standard s t i f fness  matrix procedure [See MURAKAWA and ATLURI (l978a ,b) for

instance, for details of f in i t e  element application of the complement~~y energy

rate principles in finite elasticity]. Alternatively, the interelement

traction reciprocity can be satisfied a priori by an appropriate choice of

the first-order stress f~nctions ‘~ from which the equilibrated ~ are deri~,ed.
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The finite element method then , in general, will lead to a “flexibility matrix”

type approach. Such “stiffness” and “flexibility” type finite element methods

based on Eqs. (75) and (73), respectively, for analyzing certain metal-

forming problems are the subjects of the author ’s work in progress and will

be subjects of a forthcoming paper.

3.1.3: Near Incompressibility in the Fully Plastic Range:

As discussed in the introduction, an important aspect of numerical

schemes for finite Strain elastic-plastic analysis is the problem of accurate

treatment of nearly incompressible deformation rates at such magnitudes of

strain. In a finite element application of the potential energy rate

formulation of the type given by Eqs. (43 or 54) , if the assumed deformation

rates do not a priori obey the incompressibility constraint, it may be

necessary to retain this constraint as an a posteriori constraint through

a Lagrange multiplier, the hydrostatic pressure. To this end , consider the

rate potential W(c), Eq. (18), for a classical Prandtl-Reuss type rate

constitutive law:

• W(s ) = 1/2 f : - (~. . €) (76)

The corotational rate of Kirchhoff stress, c,*, for a classical Prandtl-Reuss
- 

type approximation can be wr itten in terms of c , as suggested by McMEEKINC

and RICE (1975), as

,N ,N
r 9a ~~~~~~~~ 

-

.

= 2
~~Lô ikô j L (2h + 6 p) (fN)2 J~kL + ~~~kk8 ij  (77)

where , o’ — I if at yield and > 0 and a = 0 otherwise; r 11 
is the devia-

ton e Cauchy stress in CN; 
(.fN)

2 
(3/2)T~~ r~~~; h is the slope of the uniaxial

stress/plastic strain curve ; and X and p. , are Lame”~ constants.  We rewrite

Eq.. (77) as:

27



.r~~ ” - —---— ‘—
~~~~~~~~ ~~~~~~~ ~~~~~

‘ 
~~~~~~~~~ ~~~~~~~~~~~~

~~~~~~~~~~~~

= 2p. ~~~~~~~ + Xe~~
8
i~ 

(78)

where the definition of Eij~~ 
is apparent from comparing Eqs. (77) and (78).

We can write a in terms of its deviatori~ and hydrostatic parts, as

= + (l/3) a
~k

6j.; and likewise, express 
~ij 

= + 
~
113

~~kk
6
ij•

From Eq. (78) one can write;

= 2p . ~~~~~~~~~~~ ; = (3X + 2p . 
~~kk 

(79a,b)

Using Eqs. (77-79a,b) in Eq. (76) we can write,

W = 
~

Ejj~~~
€
~~~

c i. + 
~~~ 

(~~~~~)
2 

- rN: (
~ . e) (80)

or , equivalently,

W = ~~~~~~~~~~~~~~~~ + (3X 
~ 

2

~~~~kk
2 

- T N :(c . ~~ (81)

To obtain numerically accurate solutions in situations of fully developed

plasticity it may be advantageous to retain the hydrostatic pressure as an

independent variable, and thus derive a mixed variational principle which

represents a modif ication to the potential energy rate principle given

through Eq. (43), with W expressed as in Eq. (80). To this end, we intro-

duce both c . j and ekk as additional independent variables into the function-

al of Eq. (43), through the introduction of Lagrange multipl iers ath a ,

respectively. From this general variational principle (with u, ~~~~ ~kk’

-~ ~ij’ 
and a , all as variables) we demand all the necessary field equations

in the case of near incompressibility . When the Lagrange multipliers are

identified with the relevant stress rates, th is general rate variational

principle can be written as:
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; c7kk)
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~~~~~~~~~~~~~ + ~~(~~~~)
2 
+ [tl

k ,j 6kj - ~kk ’ ( 3 X + 2 p .)

• . • Xa 6 . .

- e  ][ * - kk_~j~, N 
U(i , j )  i j  i j  3X + ~~ -‘ i j  (k,i) (k , j)

+ 1/2 T
~j

Uki ukj 
- P

NB 
J 
dV+ Boundary terms (82)

The above general principle can be seen to be valid in both the cases of

near and precise incompressibility. In the above, the notation, U(k i) 
=

L/2 (uk i  + ui k ), and U
i,k 

= has been used. If from Eq. (82) one

eliminates (i) 
~ ij  by defining a priori 

~ij  = u (i j)~ and (ii) eliminate

ekk through a contact transformatior~:
.
*

X ~ 2 ~~~~kk ?~. __________

~ 
- 

~kk (3X + 2p.) 
= - 

2 
(3X + 2p.)

2 (83)

one obtains a mixed variational principle, involving u• and as variables,

governed by the functional,
•* 2

*2 • I X 
___________

~mpl 
(ui; akk) = 

‘
~

T
N 

~~~~~~~~~~~~~~~~~~~~ - 

+ 2p.)
2

A ~~~~ N+ (3A + 2p) C~kk
t1L,j6Lj 

- T
iJ
U
(k i)

U
(k J)

+ ~ ~~~~~~~~~~~ - p N u~jdv - 

ST 
(84)

which remains valid for nearly or even precisely incompressible behavior at

large plastic strains for all assumed displacement rates U j  that do not obey

the constraint of incompressibility a priori. Eq. (84) and the associated

variational principle are analogous to the ones in the case of linear

isotropic elasticity given directly by I RRMMN (1965); however, the way

29
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in which HERRMANN arrived at his principle for the linear elastic infinitesimal

deformation case is not evident from reading his work.

Likewise, using the definition of W as in Eq. (81) in Eq. (43), and

introducing e~~ and € kk as additional independent variables into the function-

al in Eq. (43) through appropriate Lagrange Multipliers, one can derive

another alternate general variational principle, which remains valid in

the limit of incompressibility, with the associated functional:

*2 • 
~ 

•*, 
•*

TT~~ (ui ; e~~~; e~~~; a~~~; akk)

= ~ {p.E~ j  j~~~~~~~3~ 
6 ~kk~~ ~~ k,k ~kk~ ~~~~~~~~

+ [u
~i ,j )  C~~j] ai~ 

- T
if(k,i)”(k, j) + 2 T

ij
U
k i

uk j

- PN
Bi
U
U 

dV + boundary terms (85)

where u
~ij) 

— U
(i,j) 

- 

~
1
k,k

ô
ij
/3 and u(i j) is defined earlier. If from

Eq. (85) one eliminates ej ~ 
as a variable through a priori satisfying the

condition ejj — u~jj); and € kk is eliminated through the contact trans-

formation given below,

3A + 2 ~ 2 
tkk0kk kk

6 ~ 
- 

3 
- 

6(3X + 2,i.) 
(86)

one obtains an alternate mixed variational principle, also involving ui and

Gkk as variables, governed by the functional:

‘~inp2~ ”i~’kk~ VN 
~~Ej J~~~

u
~ i fl

u
(k L) + 

~~~
5•

~~

• Uk k

@kk) 
- j~ N 

- ~-d6(3X + 2p .) 
T j j u (k i) u (k j )  + 

2 
Tjj

u
kj

u
k J  ~~~~~~ 

V

- 

~~~~ 
30 
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Equation (87) and the associated principle are analogous to those derived

by KEY (1969) for linear elastic infinitesmal deformation problems; except

that , KEY (1969) , derives such a principle through FRAE LJS DE VEUBEKE ’S

(1951) interpretation of what is generally known as the Hellinger-Reissner

theorem in linear elasticity.

NACTEGAAL, PARKS , and RICE (1974, Appendix II therein), to improve the

accuracy of UL rate finite element formulations for problems of large plastic

flow, suggest a mixed formulation based on the functional:

*2 r 11 *, , (3X + 2i~) ~* 12nmp3 (th i €kk 1 _ 4 t 2 ajJ€ ij + 3 @kkCkk - ? kk~ .

N

- T
~~J

U(k i)U
(k j ) + 

~~ 

T i j”k,i”k, j  - p N BiYif~W - 

5T 

(88)

where = u(i j) and is related to through an equation of the type

of Eq. (79a) . It is worth noting that the above formulation, Eq. (88), is

analogous to the present formulation given in Eq. (87), except for the fact

that, whereas 0kk appears as a variabAc in Eq. (87), ~kk 
appears in Eq. (88) .

• 
- 
It is interesting to observe that the procedure based on Eq. (88) ceases to

be valid in the limit of precise incompressibility. Moreover, in the discrete

(finite-element) version of the functional corresponding to Eq. (88) (when

appropriate discrete approximations for ui and £kk are introduced),

NACTEGAAL , et al .,  (1974 ) proceed to eliminate C kk as a var iable at the

element level and introduce a modified definition for the strain energy

density functional, W. The rigorous theoretical validity of the modified

-discrete functional, as a variational basis for obtaining discretized

equilibrium equations, appears somewhat questionable.

We note that the above discussed difficulties with the incompressibility

constraint are somewhat easier to handle in the case of assumed stress finite
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element methods based on a complementary rate principle of type given in Eqs.

(73 and 74) . [For a treatment of incompressibility, using assumed stress

finite element methods, see for instance, the works of TONG (1969), and

PlAN and -LEE (1976) in linear elastic infenitesual deformation cases and

that of MURAKAWA and ATLURI (1978b) in finite elasticity problems] .

3. 2: Rate Variational Principles in Total Lagrangean Formulation:

In the numerical solution of certain problems such as, for instance,

plates and shells , it may be preferrable to use rate formulations wherein all the

variables in each subsequent increment are referred to a fixed Lagrangean

or Total Lagrangean (TL) frame . Thus tn the TL formulation, the initial

configuration C , with coordinates xi, is used to refer all the state

variables in each of the subsequent configurations. Let s ’ and t ’ be the

rates o-f 2nd and 15t Piola-Kirchhoff stresses , in going from CN to C~~1,

which stress rates are referred to and measured per unit area in the initial

configuration C0. Let V° be the gradient operator in the coordinates in

C , and set u be the rate of displacement from the current state. Then the

Total Lagrangean strain-rate, E’, is given by,

= ‘ [v ° + (vo )T 
~ (~%) (vO

~~
1)T 

+ (V0uN ) . (V
0

~)
T] (89)

where uN is the displacement at C
N 

as measured from C0 . It is seen that

the TL and UL strain-rates are related by:

= (FN
)
T 
. e . FN . - (90)

— — 
-

where FN 
= ~~~ voJ5T and e is defined in Eq. (33) . Likewise, if e’ [a(!

0
u)
T
]

is the TL rate of displacement gradient , it is related to the UL rate é by

= £ . (91)
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Also , from Eqs. (3 and 2), respectively, the relations between the TL

rates4~’ and t~! and UL rates,~ and ..t, respectively, can be derived as:

- ~ , 
JN (FN

)
_ l

(FN)
_T 

(92)

and t ’ = JN~~N)~~l t = Ts ’ . + 5
N ,T (93a,b)

where is the value of the determinant of the matrix [~~~~~ 3
]• Finally,

the TL rate of .Taumann stress, r ’, is seen, from Eqs.(4) and (5), to be —

related to t’ and s’ by:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (94 )

• (3+h
N
) +ç3+h ~5 s

, ÷ s N h , + h ,  SN]

(95)

where tN and are , respectively, the f irst  and second Piola-Kirchhoff

stress tensors in CN as referred to and measured per unit area in C ;

h
N 

is the engineering strain tensor in C referred to C ; and and a’N 0 —

are rotation tensors, such that + a’) is an orthogonal tensor, and

these are found from the application of the polar-decomposition theorem as:

(V0~~ )T 
= 

N ~ + hN) d (V0 )T 
= 

, ~~ + h~ ) + aM

(96)

Now we consider the question of the forms of rate potentials for

,~~
‘ , ,~~~

‘ , and ,E’. First, we note that if a rate potential for s of the form

of Eq. (17) exists, then, inview of Eqs. (90) and (92) , a rate potential

say W ’, can also be shown to exist for ~~‘ . Specifically, let the poten-

tial W for s Eq. (17) be written as:

W = ~ M~~~~~c~~~€~~~ ; ~3W/~ €~ = ,~- (97a,b)

-

~~~~~~~~~~ 33

__~~ __._p_ ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _____ ________ __ ______



— ~~~~~~~~~~~~~~~~~~~~~~ 
--

~~
-- - -

Where, the tensor ~~~~ can be expressed interms of Lij~~ 
and the relevant

plasticity parameters through Eqs . (18 and 16) .

Then , in view of Eqs. (90) and (92) , the rate potential W ’ for s ’ can

be written as:

= ~ ~~~~~ ~~~ 

~ ~~ 
s’ (98a,b)

where M ! .~~ = J M~5~ p ~~~ ~~~~ (99)

Likewise, inview of relation (93b) it can be seen that a rate potential U’

exists for t ’, for the case of an classical elasto-plastic material, where,

u ’ = w ’ + f sN:ç~eiT . e’~ ; ~u s/~e~
T = t ~ (lOOa ,b)

In writing the right hand side of Eq. ( lOOa) , the re la t ionE ’  = 1/2

• F
M 
+!~~ . ,~~~ ‘) may be used . Likewise , inview of Eq. (95), it can

also be seen that a rate potential Q ’ for the TL rate of Jaumann stress ,

r’, also exists, where, - -

Q’ = W ’ + ~~~~~ (h’ . 
,~~~~

‘) ;  ~~Q ’/ ~~~~~
’ = ,~~

‘ (lOla ,b)

~~~~~ Again, in writing the right hand side of Eq. (lOla) , the relation , E’ =

1/2 [‘ . (3 + h
N) + (I + lI

N
) h’] may be used.

Now we consider the rate form of the field equations and boundary

conditions . Considering the rates of Eqs. (6-l2c) these can be writ ten as:

In terms of a’; E’ ; and U ’ :

- - 

~~~~~ . • e~
T 
+ s’ • + p°B ’ = 0 (102)

(AMB)-~ .e’ 3,T 
- 

(103)
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(Compatibility) E’ = [e’ + 5,T + etT eM + • ~~ (104)

, o Twhere e = (!~~
)

(TBC)-’ {5
N ~~,T + a ’ . F~~j . E = t ’ - on S (105)

Where t’ are prescribed tractions per unit area of the surface segment S

of the boundary of the solid in C , and n is a unit  outward normal to S
a

•

0
(DBC)- u = ~ at S (106)

0 -

In terms o f t ’; 
,~~~

‘; and U (or ,E’, 
~~~‘, Ii ’, and ~):

(LMB)-’ V0 
• t ’ + p °B’ = 0 (107)

- ~N ~~, ~N = tNT 5 ,T 
+ t ,T 

. (108)

or, equivalently,

(AMB)—’ h’ ~
N N 

+ ~~N + I) • Lt’ . + ~N a ’) (109)

= symmetric

(Compatibility)-’ = (V”)~ (110)

or, equivalently, 2’ a • (I + h
N
) + ~

N 
• Ii ’ = (V0u.)T (111)

(TBC)-’ n. ,.S’ a t ’ =
~~~

‘ atS~ - 
(112)

(DBC)-’ U U at S~~ (113)
0
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3.2.1: General Variational Principles in TL Rate Form:

3.2.1.1: In terms of 
~~

‘ ; £‘; and u

Using procedures analogous to those leading to Eq. (42) of the UL

case , a general rate variational principle governing Eqs. (102 to 106, and
*

98b) can be stated through the condition of stationarity of the functional

and u) = {w ’ (E’) - p °B ’ • t i+  
l N

L~
T

- 1/2 ç~~~÷
tT + e tT 5N~~~5

NT . e ’)]}dV

-

~~ 

t ’ . u ds - t ’ . (u - U) ds (114)

u
0 0

where .2’ = (V%) T; W’ is as defined in Eq. (98a), and t ’ is as defined in

Eq. (105) . Once again , a functional to check the true satisfaction of

the fully nonlinear field equations in CM 
can be derived, but is omitted

here [see MURAKAWA (1978) , for instance, for further details]. If one

eliminates E ’ and~~’ from Eq. (114), by a priori satisfying Eqs. (98b, 104,

and 106) , one obtains a potential energy rate principle with the associated

functional :

j ’ ~~~~~ - p °B’ u .
~- l12~~

N. (2~
T~ e’)]dV

p V

- 
- 

~~~~~~~~~ 

~ ds (115)

where & = (V0u)T Likewise, by. inverting Eq. 98b, one can achieve a contact

transformation,

*
W ’ — s ’ :~~’ = —S ’ (s ’) (116)

*This functional can be modified , in a manner analogous to that leading to
Eqs . (82 and 85) respectively, to d&~rive rate principles which can be used
to treat cases of near or precise incompressibility .
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• -1:
such that V = ~S*/&j~ (117)

Using Eq. (116), one may eliminate E ’ as a variable from Eq. (114) and obtain

a functional, say rr~~~( U s ’) corresponding to a HELLINGER-REISSNER type

rate principle.

In general, a complementary energy rate principle may be derived from

Eq. (114) by eliminatingE’ from Eq. (114) using Eq. (116); and by satisfying

both the equations of LMB and AZIB, Eqs. (102) and (103) respectively, a

priori . When this is done, one can formally obtain a complementary energy

rate functional,

~~ 
(~~~.~ ‘) {s’ * (s ’) + ~ N 

[(V°u) . (VOU)
T
]}dV 

-

- 

‘L0..s ’ . ‘.1 ds (118)

Thus , as in the UL rate formulation, even in the TL formulation, both s’

and u appear as variables in the complementary principle; however there is

a significant difference between the two cases from the point of view of

application. In the TL rate formulation, the AMB condition, Eq. (103), is

quite simple to be satisfied, provided the chosen s’ is symmetric. However,

in LMB condition, Eq. (102), both the stress rate s ’ , and the displacement

gradient rate$’ axe involved ; moreover, there is a strong coupling between

and the currently known functions , FN (x) . Thus the admissible stress

field 2’, to be used in a complementary energy rate principle, if one were

contemplated based on 2 ’’ must represent a solution to the set of partial

differential equations, Eq. (102), with variable coefficients. While this

may mathematically not be impossible, it defeats the very purpose of a

variational principle forming the basis of a simple numerical method such

37
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as a finite element method . Thus the rate complementary energy principle

based o n s ’ , for finite strain plasticity analysis , does not appear to be

practically useful-.

3.2.1.2: Based ont~
’; 

~~
‘; and U:

Likewise, a general variational principle governing Eqs . (107 , 108, 110,

112, 113 and lOOb) can be shown to be governed by the stationarity condition

of the functional: -

e ’ ; u) = r {u’ ç
~~ 

- p 3 ’ . - t,T l ,  (v0U) T
]}dv

- 
~~~ ds - 

~u~~

’ • (
~ - U ’) ds (119)

where U ’ is defined through Eq. (lOOa) ; and t ’ is defined in Eq. (112) . As

in the UL rate case , because of the special structure of U ’ as given in Eq.

(lOOa), it can be shown that ,~~
‘ , as derived from U ’ through Eq. (lOOb),

identically satisfies the AMB condition, Eq. (108).

If from Eq. (119) one eliminates 2’ and t ’ as variables, by a priori

satisfying Eqs. (b Ob, 110, and 113), one can derive a rate form of a

potential energy functional:

{u ’ (u) - p°8’ . u} dv - ~~~~t ’ . u ds (120)

the stationarity of which functiona1 leads to Eqs. (107, 108, and 112) as

its Euler equations and natural b.c. However, the above variational prin-

ciple can be seen to identical to that in Eq. (115), because of Eq. (1uC,~).

By inverting Eq. (10Gb), one may, under certain conditions analogous

to those discussed in the Ut rate case, achieve a contact transformation,

38 
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• U ’(,S’) - t iT~et = ~T ’ ç~~’) (121)

Such that~~TI*)~t~ e~
T 

(122)

However , analogous to the situation discussed earlier in connection with the

Ut rate formulation, the ANB condition , Eq. (108) , cannot be verified to

be embedded in the structure of T’(t ’) as obtained from Eq. (121) . Thus

the HELLINGER —REISSNER type principle in terms of t ’ and u [derivable by

using Eq. (121) in Eq. (119)] , or the complementary energy rate principle

in terms of ,~’ alone [derivable by satisfying conditions of Eqs. (121, 107,

and 112) a priori in Eq. (119)] cease to be rational principles; since, the
*

AMB condition for t ’ is neither embedded in the structure of T’ nor does

it follow as an Euler equation from these principles.

3.2.1.3: In terms of a ’; h’ ; u ’; and ,~~’( ,E ’; 
~~

‘)

Once again , -to avoid the above d i f f icul t ies  in formulating consistent

complementary energy and Hellinger-Reissner type rate variational principles,

we transform the general variational principle associated with Eq. (119)

into one invo1ving~~’; ~~‘ ; ,~~~~
‘
; and u as variables. To this end we f i r s t

note from Eqs. (lOOa) and (lOla),

U’ = Q’ - 1/2 s
N
: (h’ . h’) + 1/2 s

t
~: (elT . ~~ (123)

Upon making use of the relations,

2’ =
~~~~

‘ . ~~ ~~~~~ ~~~~N 
• h ’ (124)

and the orthogonality condition and its rate form;

NT N ,T . N  NT
~ Z = ‘ ; z  . a  -a 

~~~~~ 
(125) 

- 
-
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and the relation ~
N ~N FNT one can, through relatively straightforward

algebra , reduce Eq. (123) to

= - ~~~ (~~‘ . h’)  - 1/2 tNT : [a~ . a
NT 

. cy ’ . (I + h
N)] (126) 

‘

Upon using Eq. (126) and (124) , Eq. (119) can be rewritten as:

~~~~~~~~ ~~~~~ ~~~~~ ~~~~
‘)  = 

~~~~
‘
~~~~

‘ - p°
~

’ . 
- -

+ t I T :[(V 0 1)T I (1~~~~+~N) 
N 

.
~~~~f]

- l/2 tNT [I  )
~ . c y ’ .

- t ’ . u ds - r t ’ . (u - 

~) ds (127)
SO

0 0 -

Where Q ’(,~ ’) is the potential for~~~’ as defined in Eq. (lOla) and~~~’ is to

be telated t o t ’ and a ’ through Eq. (94) . Noting that the variations 80”

are required to satisfy the property of Eq. (l25b), viz., that

is skew symmetric, it can be easily shown that the stationarity condition of

the above functional yields the Euler equations and natural b .c: (i) the LNB

condition, Eq. (107); (ii) the AMB condition, Eq. (109); (iii) the compatibility

condition , Eq. (111); (iv) the rate constitutive law , Eq. (b Ib); (v) the TBC ,

Eq. (112) , and (vi) the DBC Eq. (113).

By inverting (even if numerically) the relation of Eq. (b ib) ,  one

can obtain a contact transformation,

*Q ’ - ,E ’ :h’  = R ’ (s’)
or Q’ - 1/2 U’ N

+~~~
N 
. ~~~

g + a NT t ,T +a tT . tNT
]:hI = ~R~

*
(,~~)

(128)
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such that ~R ’ / ~r’ ~~~
‘ (129)

By using Eq. (128), one can eliminate h’ as a variable from Eq. (127)

and obtain a functional u~~(u’; i-’; t’) corresponding to a HELLINGER-REISSNER

type variational principle.

FInally, by requiring t’ to satisfy only the linear LMB condition, Eq.

(107), and the TBC, Eq. (112), one can eliminate u ’ as a variable from

and obtain a TI. rate complementary energy functional,

ii~~ ~~ ‘;a ’~ =~~~~{~R~*(r ~ )  t I T E ,  . (3÷ h
M
)]

- .1 ~NT NT ~ (
~ + h~) ]} dV -

+ 

~~~~~~~~~ 

. u ds - (130)

Wherein it is implied that ’ is related t o t ’ and Z’ through Eq. (94) .

Noting that the variations ôt ’ are now subject to the constraints that

• ot ’ = 0 in V and n . öt ’ = 0 at S ; and that the variation 6a ’ are

subject to the constrai:t that a~~ . skew-syninetric, it can te shown

• easily that the condition of vanishing of the first variation of the above

functional leads to: (i) compatibility condition, (V0%)T • ~~ + h~ ) +

• h ’; (ii) the AMB condition, Eq. (109); (iii) the ~BC, Eq. (113).

Once again , in as much as the AMB condition follows unambiguousl y as

in Euler equation; and the admissible ,
~~~

‘ is required to satisfy only the

uncoupled linear LMB condition, Eq. (107) [which can be satisfied easily

through first-order stress functions, Y , as t’ = x ‘1 + t’~~; and t’~ is any

particular solution such that 
~Z.° .t’~~ ~~

°
!‘], and the TBC, Eq. (12), the

d
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TL rate complementary energy principle of Eq. (130) , is the mos t consistent

and usefu l principle for purposes of engineering application.

As in Eq. (75) for the Ut rate case, in the application of Eq. (130)

also to a finite element assemblage, the interelement traction reciprocity

condition, (n . ,t’)4 

+ (n • ~~~~~~~~~~ 
at 

~mo 
can be relaxed a priori, and in-

troduced as a constraint condition in a modified complementary energy

principle through Lagrange Multipliers at p 0. This modified principle

is stated through the functional:

=V ~ {~~*~ ~~t~
T :[a~ . (I+h

N
)]

- 
•1 

~
NT [t  aNT z ’ . (I +hN)J}dv

in 
. ~ ds 

~~~~Lo~
’ E

’)  
‘

~~~
, 

dp (131)

As in the Ut rate case [see discussion following Eq. (75)] the

functional in Eq. (31) can be used to develop a finite element “stiffness

matfix” method and Eq. (130) can be used to deveiop fLnite element “flexibility

matrix” approach. The author’s work in progress in this regard, along with

analysis of certain metal forming problems is the subject of a forthcoming

paper.

Finally it should be remarked that eventhough the development of Eq . (130),

as a basis of a TL rate comp lementary energy principle for finite strain

elasto-plasticity was based on independent cons iderations , the result

is analogous to the principle derived by FRAEIJS DE VEUBEKE (1972). However,

FREIJS DE VEUBEKE ‘S (1972) principle governs the total (as oppo sed to rates)

deformations of a compressible elastic solid. It is also noted that a TL
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rate principle equivalent to that of FR AEIJS DE VEUBEKE (1972) was develooed

and used, in the context of an assumed stress-rate finite element method,

to solve certain finite strain problems for nonlinear elastic, compressible

as well as incompressible solids by MURAKAWA and ATLURI (l978a,b).

Finally we remark that the TI. rate complementary energy principle f or

elastic-plastic solids given presently in Eq. (130) differs slightly from

that for nonlinear elastic solids given eariler by MURAKAWA and ATLURI

(l978a), this difference is in the third term in the volume integrand on

the right hand side of Eq. (130): instead of the term appearing in Eq. (130),

the term - tNT:[at . (I + h
N)] appears in the paper by MURAKAWA and ATLURI

(l978a) . The effect of this is: whereas the exact rat e condition of AMB,

- Eq. (109) becomes an Euler equation of the principle in Eq. (130) , the AZIB

condition which follows as an Euler Equation for the principle given in

MURAXAWA and ATLURI (l978a) is that (I + hN). ~~I ~ N + h ’ . ~
N 

a
N is

symmetric [which condition represents only an approximation to the exact

condition, Eq. (109)]. However, the iterative correction procedures to

check the satisfaction of the fully nonlinear AMB condition of Eq. (h a) at

the end of each increment were employed by MURAKAWA and ATLURI (1978a) to

correct the above approximation in the rate AMB condition . In this sense,

the principle currently stated through Eq. (130) [which is equally applicable

*to nonlinear elastic solids, when the potential R’ (,~~‘) is appropriately

defined] is the most consistent TL rate complementary energy principle for

finite strain analysis of elastic as well as elastic-plastic solids.
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